An Extended Loomis–whitney Inequality for Positive Double John Bases

نویسندگان

  • AI-JUN LI
  • GUANGTING WANG
  • GANGSONG LENG
  • G. LENG
چکیده

In this paper, we establish an extended Loomis–Whitney inequality for positive double John bases, which generalises Ball’s result [1]. Moreover, a different extension of the Loomis–Whitney inequality is deduced. 2010 Mathematics Subject Classification. 52A20, 52A21, 52A40.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Trilinear Restriction Problem for the Paraboloid in R

We establish a sharp trilinear inequality for the extension operator associated to the paraboloid in R3. Our proof relies on a recent generalisation of the classical Loomis–Whitney inequality.

متن کامل

Geometric stability via information theory

The Loomis-Whitney inequality, and the more general Uniform Cover inequality, bound the volume of a body in terms of a product of the volumes of lowerdimensional projections of the body. In this paper, we prove stability versions of these inequalities, showing that when they are close to being tight, the body in question is close in symmetric difference to a box. Our results are best possible u...

متن کامل

Computing from Projections of Random Points: a Dense Hierarchy of Subideals of the K-trivial Degrees

We study the sets that are computable from both halves of some (Martin-Löf) random sequence, which we call 1{2-bases. We show that the collection of such sets forms an ideal in the Turing degrees that is generated by its c.e. elements. It is a proper subideal of the K-trivial sets. We characterise 1{2-bases as the sets computable from both halves of Chaitin’s Ω, and as the sets that obey the co...

متن کامل

On a Loomis-whitney Type Inequality for Permutationally Invariant Unconditional Convex Bodies

For a permutationally invariant unconditional convex body K in R we define a finite sequence (Kj)j=1 of projections of the body K to the space spanned by first j vectors of the standard basis of R. We prove that the sequence of volumes (|Kj |)j=1 is log-concave.

متن کامل

An extended multidimensional Hardy-Hilbert-type inequality with a general homogeneous kernel

In this paper, by the use of the weight coefficients, the transfer formula and the technique of real analysis, an extended multidimensional Hardy-Hilbert-type inequality with a general homogeneous kernel and a best possible constant factor is given. Moreover, the equivalent forms, the operator expressions and a few examples are considered.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011